Module 10a: Storm Sewer Design

Bob Pitt
University of Alabama
and
Shirley Clark
Penn State - Harrisburg

Siren lights on this submerged firetruck are still flashing on the East Loop at I-10.
Photo by Paul Carrizales

Photo from Houston Chronicle.

CITY OF BIRMINGHAM PERMITS

DEPARTMENT OF PLANNING, ENGINEERING AND
PERMTS ENGINEERING DESIGN GUIDELINES

3. STORM SEWERS

3.01 Method of Determining Runoff
(a) Storm water runoff may be estimated using any accepted method. The two predominan methods presently in use are he Rational Method and he scs unoff estimation is not limited to either method. The ovner's engineer shall be responsible for selecting an appropriate method
(b) Slorm sewer systems shall be designed based on future land use.
3.02 Return Periods
(a) The minimum return period used in the design of storm sewer collection systems shall be the 10 year retum period.
(b) Box culverts and pipes larger than 60° shall be design using the 25 year return period
(c) Other return periods may be used as determined by the owner's engineer.
3.03 Storm Sewer Design
(a) In general, the Manning equation shall be used to size drainage structures.
(b) A Manning's " n " of 0.013 shall be used to size concrete pipe and box culverts.
(c) In developed areas, the proposed drainage system shall be compatible with the existing drainage system. The developer may be required to upgrade the existing system to accommodate the proposed development.
(d) The minimum pipe diameter allowed is 18 inches.
(e) Storm sewer pipe shall be a minimum of Class 3 reinforced concrete if the storm sewer is to be maintained by the City of Birmingham, is in an easement, and/or passes runoff through a site. Other pipe materials may be used on systems that will not be turned over to the City of Birmingham for maintenance.
(f) The crowns (inside tops) of pipes shall match wherever practical when changing pipe sizes.
(g) In general, all drainage structures shall be extended to the limits of the development.
(h) Box culverts shall be designed for AASHTO HS-20 loading in vehicular traffic areas (existing or potential) and HS - 15 loading in all other areas.
(i) Manholes or inlets shall be placed at changes of direction, changes in grade, junctions with other pipe, where needed to drain an area, or every 400 feet, whichever of these distances is less.
(j) Manholes, inlets, headwalls, etc., shall comply with the details on file in the Department of Planning, Engineering and Permits.

Birmingham Intensity - Duration - Frequency (IDF) Curve

Basic Application of Rational Formula:

Determine "10-yr" (10\% probability of being exceeded in any one year)

Pipe AB : inlet $\mathrm{tc}=6 \mathrm{~min} ; \mathrm{i}=7.4 \mathrm{in} / \mathrm{hr} ; \mathrm{Q}=\mathrm{CiA}=(0.3)(7.4 \mathrm{in} / \mathrm{hr})(3.1 \mathrm{acres})=6.9 \mathrm{cts}$
Pipe $B C$: inlet tc $=8 \mathrm{~min}$ vs. $6+0.6 \mathrm{~min}$, use $8 \mathrm{~min} ; \mathrm{i}=6.6 \mathrm{in} / \mathrm{hr}$;
$\mathrm{Q}=[(3.1 \mathrm{ac})(0.3)+(2.8 \mathrm{ac})(0.4)] 6.6 \mathrm{in} / \mathrm{hr}=13.5 \mathrm{cfs}$
Pipe CD: inlet tc $=5 \mathrm{~min}$ vs. $6+0.6+0.5 \mathrm{vs} .8+0.5$, use $8.5 \mathrm{~min} ; \mathrm{i}=6.3 \mathrm{in} / \mathrm{hr}$; $\mathrm{Q}=[(3.1 \mathrm{ac})(0.3)+(2.8 \mathrm{ac})(0.4)+(2.1 \mathrm{ac})(0.35)] 6.3 \mathrm{in} / \mathrm{hr}=17.5 \mathrm{cfs}$

The travel times in the pipes can only be calculated after the pipe sizes are selected and the velocities at the design flows are determined.

Pat Avenue storm sewer example.

Site Information

Sub- catchment	Area (Acres)	Pipe length (ft)	Slope (ft/ft)	Imperv. $(\%)$
1001	1.07	-	0.084	54
1011	1.09	300	0.093	54
1021	1.43	300	0.072	54

Pat Avenue is located in Birmingham, AL. It consists of three subcatchments, three junctions (nodes) and two conduits (pipes) in a residential area. The water collected during a rainstorm is discharged to a main sewer trunk.

Runoff Coefficients for the Rational Formula for Different Hydrologic Soil Groups (A, B, C, D) and Slope Ranges (from McCuen, Hydrologic Analysis and Design. Prentice-Hall, Inc. 1998)

Land Use	A			B			C			D		
	$\begin{aligned} & \hline 0- \\ & 2 \% \end{aligned}$	2-6\%	6\%+	$\begin{aligned} & 0- \\ & 2 \% \end{aligned}$	2-6\%	6\%+	$\begin{aligned} & 0- \\ & 2 \% \end{aligned}$	2-6\%	6\%+	$\begin{aligned} & 0- \\ & 2 \% \end{aligned}$	2-6\%	$\stackrel{6 \%}{+}$
Residential Lot, $1 / 8$ acre	0.25 ${ }^{\text {a }}$	0.28	0.31	0.27	0.30	0.35	0.30	0.33	0.38	0.33	0.36	0.42
	$0.33^{\text {b }}$	0.37	0.40	0.35	0.39	0.44	0.38	0.42	0.49	0.41	0.45	0.54
Residential Lot, $1 / 4$ acre	0.22	0.26	0.29	0.24	0.29	0.33	0.27	0.31	0.36	0.30	0.34	0.40
	0.30	0.34	0.37	0.33	0.37	0.42	0.36	0.40	0.47	0.38	0.42	0.52
Residential Lot, $1 / 3$ acre	0.19	0.23	0.26	0.22	0.26	0.30	0.25	0.29	0.34	0.28	0.32	0.39
	0.28	0.32	0.35	0.30	0.35	0.39	0.33	0.38	0.45	0.36	0.40	0.50
Residential Lot, $1 / 2$ acre	0.16	0.20	0.24	0.19	0.23	0.28	0.22	0.27	0.32	0.26	0.30	0.37
	0.25	0.29	0.32	0.28	0.32	0.36	0.31	0.35	0.42	0.34	0.38	0.48
Residential Lot, 1 acre	0.14	0.19	0.22	0.17	0.21	0.26	0.20	0.25	0.31	0.24	0.29	0.35
	0.22	0.26	0.29	0.2	0.28	0.34	0.28	0.32	0.40	0.31	0.35	0.46
Commercial	0.71	0.71	0.72	0.71	0.72	0.72	0.72	0.72	0.72	0.72	0.72	0.72
	0.88	0.88	0.89	0.89	0.89	0.89	0.89	0.89	0.90	0.89	0.89	0.90

${ }^{b}$ Runoff coefficients for storm recurrence intervals of 25 years or longer.

Example of Rational Method Calculation for Area 1001

- Drainage Area (assume: 10-year storm because street is a minor urban street and not a collector street)
- Drainage Area: 1.07 acres
- Watershed Slope: 0.084
- Hydrologic Soil Group C (assume/look up)
- Land Use Description: $1 / 2$ acre lots
- Time of Concentration: 10 minutes
- Using $\mathrm{T}_{\mathrm{c}}=10$ minutes, $\mathrm{i}=6.4 \mathrm{in} / \mathrm{hr}$ for 10-year storm
- Using $1 / 2$-acre lot size, $6+\%$ slope, C soil, $\mathrm{C}=0.32$
- Peak Discharge $=\mathrm{Q}_{\mathrm{p}}=\mathrm{CiA}$
$\mathrm{Q}_{\mathrm{p}}=(0.32)(6.4 \mathrm{in} / \mathrm{hr})(1.07 \mathrm{acres})=2.19 \mathrm{cfs}$

Detailed Site Information
Conduit Information

Conduit	Shape	Slope	Length (ft)	Manning's n
1000	Circular	0.073	300	0.013
1001	Circular	0.053	300	0.013

Manning's Equation

Diameter of a Pipe Flowing Full Using Manning's Equation for Flow

These equations are for US
Customary units! Use cfs for Q , and ft for D .

Without the 1.49 in the denominator
of the last expression, SI units can
be used: $\mathrm{m}^{3} /$ sec for Q and m for D .

Storm Sewer Calculations

Conduit	Shape	Slope	Length (ft)	Manning's \boldsymbol{n}	Total Q at end of pipe (cfs)
1000	Circular	0.073	300	0.013	2.19
1001	Circular	0.053	300	0.013	4.29

Conduit	Q (cfs)	Calculated $\mathbf{D}(\mathrm{ft})$	Actual D (ft)	Regulated D (ft)	Q $_{\text {ful }}(\mathbf{c f s})$
1000	2.19	0.573	0.667	1.5	28.4
1001	4.29	0.792	0.833	1.5	24.2
At outlet	7.25	0.958	1	1.5	24.2

Storm Sewer Calculations

Conduit	Q (cfs)	Min. required pipe size (ft)	$\mathbf{Q}_{\text {full }}(\mathbf{c f s})$	Q/Q $_{\text {full }}$	d/D
1000	2.19	1.5	28.4	0.077	0.19
1001	4.29	1.5	24.2	0.18	0.29
At outlet	7.25	1.5	24.2	0.30	0.38

Conduit	$\mathrm{V}^{\text {full }}$	$\mathrm{V}_{\text {full }}(\mathrm{ft} / \mathrm{sec})$	V at peak flow (ft/sec)	Travel time in pipe (min)
1000	0.59	16.1	9.5	0.5
1001	0.76	13.7	10.4	0.5
At outlet	0.90	13.7	12.3	-

[^0]
Pipe Sizes

- Minimum size 12-18 inches
- In many locations, the minimum size of a storm sewer pipe is regulated

Velocities

- Minimum velocity of $2.0 \mathrm{ft} / \mathrm{sec}(0.6 \mathrm{~m} / \mathrm{sec})$ with flow at $1 / 2$ full or full depth
- Maximum average velocities of 10-12 $\mathrm{ft} / \mathrm{sec}(2.5-3.0 \mathrm{~m} / \mathrm{sec})$ at design depth of flow
- Minimum and maximum velocities may be specified in state and local standards

Slopes

- Sewers with flat slopes may be required to avoid excessive excavation where surface slopes are flat or the changes in elevation are small.
- In such cases, the sewer sizes and slopes should be designed so that the velocity of flow will increase progressively, or at least will be steady throughout the length of the sewer.

Basic watershed data:

Catchment	Surface	C	L (m)	n	S_{0}
A 1ha	pervious 50\%	0.2	80	0.2	0.01
	impervious 50\%	0.9	60	0.1	0.01
B 2 ha	pervious 909	0.2	140	0.2	0.01
	impervious 10%	0.9	65	0.1	0.01

The effective rainfall rate $\left(i_{e}\right)$ is as follows, using the IDF curve equation and the rational formula:

$$
\begin{array}{ll}
i_{e}=C i=C \frac{7620}{t_{c}+36} & \begin{array}{l}
\text { where } \mathbf{c} \text { is the runoff coefficient. The time of } \\
\text { concentration can be estimated using the } \\
\text { following equation: }
\end{array} \\
t_{c}=6.99 \frac{(n L)^{0.6}}{i_{e}^{0.4} S_{0}^{0.3}} & \begin{array}{l}
\text { Where } \mathbf{n} \text { is the Manning's roughness factor for } \\
\text { sheetflow conditions, } \mathrm{L} \text { is the flow length (m) } \\
\text { and } S_{o} \text { is the slope of the watershed, as } \\
\text { presented in the above data table. }
\end{array}
\end{array}
$$

Since the area of the catchment is 1 ha $\left(10,000 \mathrm{~m}^{2}\right)$, the peak runoff rate, Q_{p}, can be calculated using the rational formula as:
$Q_{p}=\bar{C} i A=(0.55)\left(2.58 \times 10^{-5} \mathrm{~m} / \mathrm{s}\right)\left(10,000 \mathrm{~m}^{2}\right)=0.142 \mathrm{~m}^{3} / \mathrm{s}$
However, the impervious area should be examined alone, as it may produce a greater peak flow rate than the whole averaged area. This recognizes the separate routing of flows from these greatly different subareas. The time of concentration of the impervious area in catchment A is 11 minutes, and the corresponding rainfall rate averaged for that duration is $162 \mathrm{~mm} / \mathrm{hr}\left(4.5 \times 10^{-5} \mathrm{~m} / \mathrm{sec}\right)$. The impervious area runof coefficient is 0.9 and the area is 0.5 ha ($5,000 \mathrm{~m}^{2}$). Therefore, the peak runoff rate, Q_{p}, can be calculated as:

$$
Q_{p}=\bar{C} i A=(0.9)\left(4.50 \times 10^{-5} \mathrm{~m} / \mathrm{s}\right)\left(5,000 \mathrm{~m}^{2}\right)=0.203 \mathrm{~m}^{3} / \mathrm{s}
$$

This calculated peak runoff rate for the impervious areas alone is therefore greater than the peak runoff rate calculated for the whole catchment averaged conditions, and is therefore controlling. The flow to be handled in Pipe 1 is therefore $0.203 \mathrm{~m}^{3} / \mathrm{sec}$.

These equations are solved simultaneously to obtain the following time of concentration values for each watershed subarea

Catchment	Surface	$\boldsymbol{t}_{\boldsymbol{c}}$ $(\mathbf{m i n})$
A	pervious area	46
	impervious area	11
B	pervious	71
	impervious	12

Flows at Inlet 1 and Pipe 1:

Pipe 1 only receives runoff from inlet 1 , contributed by catchment A. When the entire catchment A is contributing flow, the time of concentration is 46 minutes (the time needed for both the pervious and impervious areas to be fully contributing). The average rainfall rate corresponding to this time of concentration is therefore $92.9 \mathrm{~mm} / \mathrm{hr}$ (or $2.58 \times 10^{-5} \mathrm{~m} / \mathrm{sec}$). The area weighted runoff coefficient is:

$$
\bar{C}=0.5(0.9)+0.5(0.2)=0.55
$$

Flows at Inlet 2:

When the entire catchment B is contributing flow, the inlet time of concentration is 71 minutes. The corresponding averaged rainfall rate for this duration is $71.2 \mathrm{~mm} / \mathrm{hr}\left(1.98 \times 10^{-5} \mathrm{~m} / \mathrm{sec}\right)$ and the area-weighted runoff coefficient is:

$$
\bar{C}=0.1(0.9)+0.9(0.2)=0.27
$$

The catchment B area is $\mathbf{2}$ ha $\left(\mathbf{2 0 , 0 0 0} \mathrm{m}^{\mathbf{2}}\right)$ and the peak runoff rate is therefore:
$Q_{p}=\bar{C} i A=(0.27)\left(1.98 \times 10^{-5} \mathrm{~m} / \mathrm{s}\right)\left(20,000 \mathrm{~m}^{2}\right)=0.107 \mathrm{~m}^{3} / \mathrm{s}$
The impervious area alone has a time of concentration of 12 minutes, and the corresponding averaged rainfall rate for that period is $159 \mathrm{~mm} / \mathrm{hr}(4.41 \mathrm{x}$ $10^{-5} \mathrm{~m} / \mathrm{sec}$). The impervious area runoff coefficient is 0.9 and the area is 0.2 ha $\left(2,000 \mathrm{~m}^{2}\right)$. The peak runoff rate just from the impervious area component of catchment B is therefore:
$Q_{p}=\bar{C} i A=(0.9)\left(4.41 \times 10^{-5} \mathrm{~m} / \mathrm{s}\right)\left(2,000 \mathrm{~m}^{2}\right)=0.079 \mathrm{~m}^{3} / \mathrm{s}$
In this case, the peak flow is greater when the whole catchment conditions are averaged, and the peak flow at inlet $\mathbf{2}$ is therefore $0.107 \mathrm{~m}^{3} / \mathrm{sec}$.

Flow in Pipe 2:

The peak flow for pipe 2 must consider several alternatives. The first case considers the entire 3 ha ($30,000 \mathrm{~m}^{2}$) area of catchments A plus B averaged together (a common way of applying the rational formula, as previously illustrated). The time of concentration for catchment A contributions is the inlet time of concentration of 46 min ., plus the travel time of the flow in pipe 1, here assumed to be 2 min . This potential time of travel path therefore totals 48 minutes. This is compared to the inlet time of concentration of catchment B which is 71 min . The 71 min . pathway is therefore the longest and is the time of concentration. The corresponding rainfall rate averaged for this period is $71.2 \mathrm{~mm} / \mathrm{hr}\left(1.98 \times 10^{-5} \mathrm{~m} / \mathrm{sec}\right)$. The area-weighted runoff coefficient is therefore:

$$
\bar{C}=\frac{1}{3}[(0.5+0.2)(0.9)+(0.5+1.8)(0.2)]=0.36
$$

and the peak runoff rate is calculated as:

$$
Q_{p}=\bar{C} i A=(0.36)\left(1.98 \times 10^{-5} \mathrm{~m} / \mathrm{s}\right)\left(30,000 \mathrm{~m}^{2}\right)=0.214 \mathrm{~m}^{3} / \mathrm{s}
$$

Considering the impervious areas of catchments A and B alone, the area is 0.7 ha ($7,000 \mathrm{~m}^{2}$) and the time of concentration is 13 min . (the 11 min . time of conc. for the impervious areas in catchment A plus the $\mathbf{2} \mathbf{~ m i n}$. travel time in Pipe 1 vs. the 12 min . time of concentration for the impervious areas in catchment B). The corresponding rainfall rate averaged for this time is $156 \mathrm{~mm} / \mathrm{hr}\left(4.32 \times 10^{-5} \mathrm{~m} / \mathrm{sec}\right)$, the runoff coefficient is 0.9 , and the rational formula provides the peak runoff rate:
$Q_{p}=\bar{C} i A=(0.9)\left(4.32 \times 10^{-5} \mathrm{~m} / \mathrm{s}\right)\left(7,000 \mathrm{~m}^{2}\right)=0.272 \mathrm{~m}^{3} / \mathrm{s}$
Therefore, the peak flows using the impervious areas alone are controlling for Pipe 2.

In reality, it is likely that the most critical condition would be associated with a combination of conditions, possibly using the impervious area data from catchment A and the entire area from catchment B. It is not easy to tell unless a complete hydrograph routing method that examines the separate subareas is used, such as WinTR-55 for the major drainage areas (or surface drainage), or SWMM5 for any condition. Recall that with WinTR-55, it is necessary to separate subcatchments that differ by a CN of 5, or greater, in each subwatershed.

Pipe Selection (Example 5.45; Chin 2006)

A concrete pipe is to be laid parallel to the ground surface having a slope of 0.5%. The stormwater design peak flow rate is $0.43 \mathrm{~m}^{3} / \mathrm{sec}$.

Using the Manning's Equation (and SI units):

$$
D=\left(\frac{3.21 Q n}{\sqrt{S_{o}}}\right)^{3 / 8}=\left[\frac{3.21\left(0.43 \mathrm{~m}^{3} / \mathrm{sec}\right)(0.013)}{\sqrt{0.005}}\right]=0.6 \mathrm{~m}
$$

However, the Manning's equation is only valid for fully turbulent flow and is only appropriate when the following condition is satisfied: $\quad n^{6} \sqrt{R S_{o}} \geq 10^{-13} \quad$ checking:

$$
(0.013)^{6} \sqrt{(0.6 \mathrm{~m} / 4) 0.005}=1.3 \times 10^{-13} \geq 10^{-13}
$$

Therefore the Manning's equation is valid for this condition.

The velocity in the pipe is:

$$
V=\frac{Q}{A}=\frac{0.43 \mathrm{~m}^{3} / \mathrm{sec}}{\frac{\pi}{4}(0.6 m)^{2}}=1.52 \mathrm{~m} / \mathrm{sec}
$$

This velocity exceeds the minimum velocity necessary to prevent deposition (the minimum is usually considered to be 0.6 to $0.9 \mathrm{~m} / \mathrm{sec}$) and is less than the maximum velocity to prevent excess scour (the maximum is usually considered to be 3 to $4.5 \mathrm{~m} / \mathrm{sec}$).

Therefore, the selected pipe should be the next commercially available pipe size larger than 60 cm .

The Jain approximation of the Colebrook equation can be used to estimate f :

$$
\frac{1}{\sqrt{f}}=-2 \log \left[\frac{k_{s} / D}{3.7}+\frac{5.74}{\operatorname{Re}^{0.9}}\right]=-2 \log \left[\frac{1.7 \mathrm{~mm} / 57 \mathrm{~mm}}{3.7}+\frac{5.74}{\left(9.63 \times 10^{5}\right)^{0.9}}\right]=6.16
$$

which leads to: $\boldsymbol{f}=\mathbf{0 . 0 2 6 3}$. Since this differs from the initial estimated \boldsymbol{f} of 0.020 , the above computations need to be repeated. The following table summarizes the results from the initial calculations and the next (and final) calculations:

Assumed f	D $(\mathrm{~m})$	V $(\mathrm{~m} / \mathrm{s})$	Re	Computed f
0.020	0.57	1.69	9.63×10^{5}	0.0263
0.0263	0.60	1.52	9.12×10^{5}	0.0263

Therefore, the Darcy-Weisbach equation also requires that the pipe be at least 60 cm in diameter.

Darcy-Weisbach Equation (used if fully turbulent flow conditions are not satisfied)
$D=\left(\frac{0.811 f Q^{2}}{g S_{o}}\right)^{1 / 5}=\left[\frac{0.811(0.020)\left(0.43 \mathrm{~m}^{3} / \mathrm{sec}\right)^{2}}{\left(9.81 \mathrm{~m} / \mathrm{sec}^{2}\right)(0.005)}\right]=0.57 \mathrm{~m}$
The friction factor, \boldsymbol{f}, is assumed to be $\mathbf{0 . 0 2 0}$, a typical value, for this first trial. The 0.57 m pipe with this discharge has the following velocity:

$$
V=\frac{Q}{A}=\frac{0.43 m^{3} / \mathrm{sec}}{\frac{\pi}{4}(0.57 \mathrm{~m})^{2}}=1.69 \mathrm{~m} / \mathrm{sec}
$$

The concrete equivalent sand roughness factor, $\mathbf{k}_{\mathbf{s}}$, is in the range of 0.3 to 3.0 mm , and is assumed to be 1.7 mm for this example. With a water temperature of $20^{\circ} \mathrm{C}$, the kinematic viscosity is $1.00 \times 10^{-6} \mathrm{~m} / \mathrm{sec}^{2}$. The Reynolds number is therefore:

$$
\operatorname{Re}=\frac{V D}{v}=\frac{(1.69 \mathrm{~m} / \mathrm{sec})(0.57 \mathrm{~m})}{1.00 \times 10^{-6} \mathrm{~m} / \mathrm{s}^{2}}=9.63 \times 10^{5}
$$

Manhole Head Losses:

The manholes placed along the pipe will each cause a head loss, h_{m} :

$$
h_{m}=K_{c} \frac{V^{2}}{2 g}=0.22 \frac{(1.52 \mathrm{~m} / \mathrm{s})^{2}}{2\left(9.81 \mathrm{~m} / \mathrm{sec}^{2}\right)}=0.026 \mathrm{~m}
$$

K_{c} is between 0.12 and 0.32 for pipes opposite each other in manholes and the average value of 0.22 is used in the above example, along with the velocity value calculated with the Darcy-Weisbach equation. This head loss can be reduced with careful grouting of the bottom of the manholes making smooth transitions between the pipe segments. Otherwise, the down-gradient pipe must be lowered about 1 inch to account for this headloss.

Getting Started with Storm and Sanitary Drainage Analysis using SWMM5 (Beta-E 01/23/04)

The model can be downloaded by going to the EPA web site: http://www.epa.gov/ednnrmr//swmm/

PAT Avenue subcatchments, joints and conduits (in this example, another link, 1003, was created to allow all subwatershed flows to be combined before the outfall junction, now 103).

Pat Avenue Subcatchment information:
Pat Avenue Junction Information:

Junction	Invert Elevation (ft)	Maximum Depth (ft)	Initial Depth (ft)	Surcharge Depth (ft)	Ponded Area (ft²)
100	791	10	0	0	0
101	769	10	0	0	0
102	753	10	0	0	0
103 (Outfall)	745	n / a	0	0	0

Pat Avenue Conduit Information:

Conduit	Shape D	Diameter (ft)	Length (ft)	$\begin{gathered} \mathrm{n} \\ \text { Manning } \end{gathered}$	Inlet invert height offset (ft)
1000	Circular	1	300	0.013	0.5
1001	Circular	1	300	0.013	0.5
1003	Circular	1	100	0.013	0.5
Conduit	Outlet invert height offset (ft)	Initial flow (cfs)	Entry loss coefficient	Exit loss coefficient	Average loss coefficient
1000	0.5	0	0	0	0
1001	0.5	0	0	0	0
1003	0.5	0	0	0	0

"Hello World" Pat Avenue Sanitary Drainage Design Example

[^0]: Figure 2.16 Hydraulic elements for circular sewers [10]

